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A continuous random network model of amorphous silicon, subject to periodic
boundary conditions, is partitioned into cells bounded by irreducible rings. An
algorithm has been developed to find the cells and the rings that bound them. A
thread can be imagined to pass through odd rings (rings containing an odd
number of atoms) without passing through even rings. Such a thread is an
algorithmic realization of an odd line, which is the only topological defect in
glass or amorphous condensed matter. The topological entropy of disorder
associated with these odd lines is found to be approximately 80% of the value
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1. Introduction

Amorphous silicon is well described as a continuous random
network of Si atoms. Each Si atom is covalently bonded to four
nearest neighbors at a distance that varies by only a few
percent from the nearest-neighbor distance of 3.5 A that is
found in the diamond cubic structure of crystalline Si, and the
angular deviation from perfect tetrahedral bonding of 109.47°
is of the order of 10°.

A crystalline structure has characteristic topological defects
that determine its physical behavior. Besides point defects
such as vacancies and interstitials, or walls like a grain

Figure 1
A 216-atom model of amorphous silicon.

for an ideal tetrahedrally bonded random network of atoms for which the rings
that bound the cells are statistically independent.

boundary, there exist extended line defects, dislocations and
disclinations (at least in nematic liquid crystals), resulting from
breaking translational or rotational symmetry, respectively. In
amorphous materials, such as glass or amorphous Si, only one
line defect survives the breaking of translational and rota-
tional symmetries: the wedge disclination line (Rivier, 1979),
which is commonly known simply as an odd line. Odd lines are
the only topological defects in a fully tetrahedrally coordi-
nated continuous random network of Si since there are no
dangling bonds efc.

Fig. 1 pictures a 216-atom random network model of
amorphous Si subject to periodic boundary conditions. It is
one of many computer-generated models obtained by using
the method of simulated annealing. This one was chosen
because it was the first (Wooten ef al., 1985) and the smallest,
the small size making it a simpler case to deal with in a first
effort at solving the ‘odd-line problem’. The model was
constructed by randomizing and annealing a supercell of Si
that was initially in the diamond cubic structure. (Wooten et
al., 1985, Wooten & Weaire, 1987, 1995). In the crystal, there
are rings of covalently bonded atoms. Each irreducible ring
(roughly speaking, each shortest ring) consists of exactly six
atoms. (A precise definition of irreducible rings will be given
in §2.1.) The process of randomization introduces fivefold and
sevenfold rings into the structure. Eventually, even larger rings
are introduced. The model is subsequently relaxed by simu-
lated annealing. The result is a model in remarkably good
agreement with experiment as determined by the two-body
correlation function found from X-ray scattering and,
compared to other models, it gives the best agreement with
three-body correlations (Filipponi et al., 1989) found from
X-ray absorption. It is fully randomized as indicated by ring
statistics but the structure factor |S(g)|* associated with those
reciprocal-lattice vectors labeled (111) for the diamond cubic
structure is outside the standard deviation for a ‘thoroughly’
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randomized model (Wooten & Weaire, 1986). Nonetheless,
because of its agreement with experimentally measured
properties, its frequent use in calculations of the properties of
amorphous silicon (see references in Wooten & Weaire, 1995)
and, especially for the reasons of size cited above, it was
chosen as a test case for developing an algorithm for finding
odd lines.

One can pass a thread through the odd rings of a network
such that each odd ring is threaded once and only once and
such that the thread returns to the starting point to complete a
loop, or ends at a surface in a finite system, or repeats itself in a
lattice subject to periodic boundary conditions without passing
through any even rings. This process can be continued until
every odd ring has been threaded once and only once. These
threads are an algorithmic realization of the odd lines of the
topologist or the theoretical condensed-matter physicsist.
Fig. 2 shows an example of odd lines threading the odd rings
for the model of Fig. 1. Finding them and relating them to the
topological entropy of disorder in a model of amorphous
silicon is the subject of this paper.

2. Cells, corners, odd lines and rings

A cell can be defined for a periodic lattice as either the
traditional unit cell of a Bravais lattice or as the Wigner—Seitz
(Voronoi) polyhedron constructed about each atom. The
notion of a cell is unambiguous even for a liquid of like atoms
or for an amorphous solid such as a-Si, where the construction
of Voronoi polyhedra is unique.

Although the Voronoi cell is the traditional choice for
amorphous materials, there is another choice for defining cells
in a covalent random network, where one can think in terms of

Figure 2
Odd lines in the amorphous silicon model of Fig. 1.

a ball-and-stick model. It is to choose as cells those regions of
space bounded by irreducible rings of atoms as illustrated in
Fig. 3. This is the choice that will be used here. It will have to
be developed in greater detail to deal with the complexity
introduced by rings that overlap and which are not planar. It is
this complexity that complicates the process of defining and
finding cells, but the simpler description suffices for now.

The cell in Fig. 3 is a topological ‘tent’, with a six-ring base
(atoms 167, 169, 170, 171, 166, 152), and four odd rings
meeting three by three at an apex, one at each end of the edge
173-190. The point P in Fig. 3 is the centroid of the cell. Four
lines connect P to the centroids (A, B, C and D) of each of the
four odd rings. These four odd rings together with the sixfold
ring on the bottom of the cell are the boundaries that define
the cell. All cells are necessarily bounded by an even number
of odd rings (four in this case), which is the basis for the
theorem (Rivier, 1979): uninterrupted lines closing as loops or
terminating at the surface of the material or repeating them-
selves in a periodic lattice can be threaded through all odd faces
avoiding even faces. These odd lines are the topological
defects in a liquid, glass or amorphous solid.

2.1. Irreducible rings

Our common-sense definition of a ring is a set of atoms (or
vertices) such that, starting on any one of the atoms one can
progress along a bond (edge) to an adjacent atom and from
there to another atom and so forth until after n steps one
returns to the starting atom. That defines an n-fold ring. There
is no limit to the size of a ring defined that way. What we want
are rings analogous to smallest rings, which we shall call irre-
ducible rings. For this we need to refine our understanding of
an irreducible ring with a precise definition.

Definition. A ring is irreducible if there is no shorter path
between any two vertices on the ring than a path on the ring
itself.

Figure 3
A cell belonging to the model of Fig. 1 with four odd rings: A, B, C, D.
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Ring A in Fig. 3 consists of atoms 25, 152, 167, 187 and 173.
(The atom numbers correspond to the numbering in the
original crystalline supercell before randomization and
annealing.) Ring B consists of atoms 190, 169, 167, 187 and
173. Is the sixfold ring consisting of atoms 25, 152, 167, 169, 190
and 173 irreducible, thereby constituting, together with rings
A and B, a smaller cell bounded by two fivefold rings and a
sixfold ring? No. Fig. 4 shows the topological arrangement of
these rings projected onto two dimensions, where it is clear
that the (outer) sixfold ring is reducible because the path from
atom 173 to atom 167 via atom 187 is topologically shorter
(two edges) than either path (three edges) between these two
atoms that lies on the sixfold ring itself.

Henceforth, any reference to a ring means an irreducible
ring unless otherwise stated and cells are bounded by irre-
ducible rings.

Given a model for which the atomic coordinates and
neighbors are known, one needs to first find all the irreducible
rings.

The present model has 95 irreducible fivefold rings, 166
sixfold rings, 118 sevenfold rings, 32 eightfold rings and 4
ninefold rings. (All irreducible rings have been counted, even
if they overlap. See discussion of Fig. 7 in §2.3.)

2.2. Corners

Cells are built from corners. A corner is defined by three
rings that share a common atom (vertex) and such that each
pair of rings shares a common bond (edge). Finding and
identifying cells, and their bounding rings, by their corners is
the central idea of this paper. It is the basis for finding the odd
lines needed to determine the combinatorial topological
entropy.

Fig. 5 shows one corner (shaded) that belongs to the
example cell of Fig. 3. The vertex of the corner is atom 173.

The triangle (187, 173, 25) belongs to ring A. The triangle
(187, 173, 190), which is hidden, belongs to ring B. These two
rings share a bond (173-187). The triangle (25, 173, 190)
belongs to the sevenfold ring C (atoms 25, 173, 190, 176, 171,
166, 152). It shares a bond (25-173) with ring A and a bond
(173-190) with ring B. Thus, rings A, B and C form a corner as
defined above.

Fig. 6 shows a second corner belonging to the example cell
of Fig. 3. This corner is formed from rings B, C and D.
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Figure 4

An (outer) sixfold ring from Fig. 3 is reducible to two fivefold rings.

Two corners that share two rings in common belong to the
same cell. (Consider two adjacent corners of a cube for easy
visualization. But keep in mind that cubic cells bounded by
planar polygons are much simpler than the cells of a random
lattice.)

The two corners emphasized in Figs. 5 and 6 have two rings
in common (B and C) and thus belong to the same cell. Thus
the second step in finding cells is to find all pairs of corners
with two rings in common and join them to form a dihedral
wedge. Next, join all pairs of dihedral wedges with two rings in
common, and continue this process until finally a complete cell
has been found.

We have ignored this: At least two rings belong to each
triangle. For example, consider the triangle (187, 173, 25)
belonging to ring A. Atom 187 is bonded to two other atoms,
not shown in Fig. 3. Call one of them 187'. Similarly, atom 25 is
bonded to another atom 25'. If the ring (... 187, 187, 173, 25,
25, ...) is irreducible, the triangle (187, 173, 25) belongs to at
least one ring other than ring A and the corner belongs to at
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Figure 5
A corner (shown shaded) of the cell of Fig. 3. See Fig. 3 for a better
perspective of the line segments from point P.

66
Figure 6

A second corner (shown shaded) of the cell of Fig. 3. See Fig. 3 for a
better perspective of the line segments from point P.
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least eight different combinations of rings. How do we choose
the correct combination?

An approximation to the centroid of the corner is found by
taking the vector sum of the three bonds belonging to the
corner, using the vertex atom as the origin. Then, those three
rings having centroids closest to the centroid of the corner are
selected. (Taking account of periodic boundary conditions in
this process requires close attention to detail.) As a check on
these choices, it is required that the pairs of rings have at least
one atom in common in addition to those belonging to the
corner.

2.3. Pseudo-rings

The procedure to this point is conceptually simple because
we have ignored the complexities and ambiguities introduced
by overlapping rings. To resolve these ambiguities, it is
convenient to introduce the concept of pseudo-rings.

Fig. 7 shows two overlapping sevenfold rings and a sixfold
ring. These three rings are irreducible but cause problems in
defining a cell because of the overlap. The difficulties can be
removed by defining a pseudo-bond (dashed line in Fig. 8),
which creates a fivefold pseudo-ring as the overlap region of
the two sevenfold rings. The fivefold pseudo-ring is shown in
Fig. 8 as the shaded region. In the process, two fourfold
pseudo-rings are created by dividing the sixfold ring.

The cluster of rings from Fig. 8 is shown again embedded in
the structure of Fig. 9.

There appear to be two cells in Fig. 9, one bounded above
by the pseudo fivefold ring and the other bounded below by
the pseudo fivefold ring. The role of the pseudo-rings is
twofold: First, they clarify the boundaries more clearly. But,
what is more important and subtle, is that they prevent the
merging of cells. Note that if pseudo-rings were not used the
cell below would be bounded partially by both of the two
overlapping sevenfold rings, as would the cell above, so that
one should merge the cells since they would seem to have two
rings in common. This ambiguity is removed by defining the
single fivefold pseudo-ring to replace the two sevenfold rings.
However, the two cells would then still have two rings in
common (the pseudo fivefold and the sixfold) and the cells
would still merge. Thus it is also necessary to replace the
sixfold ring by two pseudo fourfold rings.

This use of pseudo-rings is fraught with opportunities to
miss when considering possible overlaps. Sevenfold rings can
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Figure 7
Two overlapping sevenfold rings and a sixfold ring.

overlap with four atoms in common, which requires introdu-
cing a pseudo fourfold ring and two pseudo fivefold rings.
Introducing pseudo-rings must be extended to overlapping
eightfold and ninefold rings in this model. In larger models
(4096 atoms), even tenfold and elevenfold rings exist. There
are numerous combinations of overlapping rings to be dealt
with.

Fig. 9 can be deceptive. One easily recognizes a sevenfold
ring on top of the cluster. This sevenfold ring is surrounded by
a pseudo fourfold ring, two fivefold rings and a sixfold ring.
These rings appear to be bounded below by the (shaded)
pseudo fivefold ring. Thus there may appear to be a cell
bounded by four odd rings and two even rings. Actually, there
are two cells in the top of the cluster lying above the shaded
pseudo fivefold ring. The sixfold ring overlaps two sevenfold
rings in a three-ring cluster topologically equivalent to the
three rings of Fig. 7, but here the two sevenfold rings are
sufficiently geometrically distorted as to be difficult to recog-
nize. One must create another pseudo fivefold ring from the
overlap region of these two sevenfold rings to separate the two
cells in the top of the cluster. It is easy to find the two
sevenfold rings with a computer program, but they are often
difficult to recognize by visual inspection. Of course, finding
eight-, nine-, ten-, eleven- and higher-fold rings is impossibly
complicated without a computer program.

Finally, one must consider the case for which the ring
identified as sixfold in Fig. 7 is reducible because of its
connections to the surrounding matrix in which the cluster is
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Figure 8

A pseudo fivefold ring created with a pseudo-bond.
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Figure 9
The rings of Fig. 8 embedded in an Si cluster.
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Table 1

Odd loop statistics.

Loop length Irreducible loops Total loops
3-fold 3 3
4-fold 2 8
5-fold 0 7
6-fold 1 5
7-fold 2 10
8-fold 1 16
9-fold 2 35
10-fold 6 58
11-fold 3 107
12-fold 5 194
13-fold 13 331

embedded. This is a rare occurrence but, if the sixfold ring is
reducible, one must not form pseudo-rings from the over-
lapping sevenfold rings. To do so would implicitly promote a
reducible sixfold ring to the status of an irreducible ring when
it is converted (improperly) into two fourfold pseudo-rings in
the process of creating a fivefold pseudo-ring from the over-
lapping sevenfold rings.

2.4. The Rivier network

The segments of odd lines shown in Fig. 2, for example,
connect to the segments of odd lines in adjoining cells, thus
making up a network called the Rivier network. For the
present model, it consists of 144 nodes at the centroids of cells.
Of these 144 cells, 96 are bounded by two odd rings, 44 are
bounded by four odd rings and six cells are bounded by six
odd rings.

The Rivier network can be decomposed into loops and
irreducible loops in the same way that the covalent network of
Si atoms can be decomposed into rings and irreducible rings.
The statistics for these loops are given in Table 1 for loops
from length 3 to length 13. Of course, in addition to closed
loops, there are lines that extend completely across the
supercell that constitutes the model and thus correspond to
odd lines that repeat themselves because of the periodicity of
the model.

Of the irreducible loops, five are minimal (three threefold
and two fourfold loops) in the sense that the rings through
which each of these loops pass all share a common bond.
Thus, if one visualizes the loop as a thread, the thread can be
tightened to be of arbirarily short length looping around the
common bond.

A picture of the Rivier network is not helpful. The large
number of small fragments of the Rivier network that connect
to neighboring supercells make for a very confusing picture.
The best visualization was obtained by making a choice of
loops to display. The choice for Fig. 2 was made as follows:
Two of the three minimal threefold loops and the two minimal
fourfold loops were chosen. (One of the threefold loops was
necessarily eliminated by the choice of the first two threefold
loops.) Then successively larger loops or repeating lines were
chosen more or less at random. The choices become more and
more restricted. If, for example, one chooses a loop containing

the line segment from face A to face C in Fig. 3, the other loop
extending through the cell necessarily consists of the line
segments from face B to face D. The choice of Fig. 2 is one out
of ~ 5 x 10% choices, as we shall find in §3.

There are 15 loops or periodically repeated lines shown in
Fig. 2. The number of odd rings through which each of the
closed loops (or the periodic part of a line) passes are: 3,3, 4,4,
4,6,9,9,10,12, 14, 17, 24, 32, 45.

In order to clearly separate the chosen loops, they are
constructed such that the odd line segments in the loop go
from one ring centroid to the next ring centroid without
passing through the centroid of the cell. This makes a clearer
picture than the Rivier network with all odd lines passing
through, and connected at, the cell centroids. In the case of
repeating lines, portions of the odd line that extend into
neighboring cells are shown without translating them back
into the supercell of Fig. 2.

3. The topological entropy of disorder

The full topological entropy of the odd-line defects has been
calculated (Rivier & Duffy, 1982) under the assumption that
every face (ring) can be odd or even, apart from the continuity
restraint, which is satisfied by the requirement that there be an
even number of odd faces per cell, for which there is a simple
proof (Rivier, 1979). For the case of a monoatomic tetra-
hedrally bonded substance such as covalent liquid Si, the
result is

S, = NkzIn2 =RIn2
-1 1 (1)
=5.76JK " mole™ .

This is the ideal (maximum) entropy for the case in which the
parity (odd or even) of the rings is statistically independent, an
assumption unlikely to be valid in an actual network. Here, we
are using S, as the upper limit for amorphous silicon, which is a
tetrahedrally coordinated covalent random network, unlike
liquid Si, which is metallic with an atomic connectivity of 6
(locally, a simple cubic configuration).

The combinatorial topological entropy of the model, S,
involving the vertices of the Rivier network, is given by

comb>

Scomb — kB In QOddLines, (2)

where Q24" s the number of distinguishable configura-
tions of the odd lines. The number of possible configurations
for a cell is

QM= —1W=m-Dr-3)n-73)...(), 3)

where 7 is the number of odd rings bounding the cell. Thus, for
example, a cell with four odd rings has three possible ways in
which two lines can pass through the cell and one with six odd
rings has 5 x 3 = 15 possibilities for passing three lines. The
total number of possible odd-line configurations for the model
with four odd cells containing six odd rings and 44 cells with
four odd rings is
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QOddLmes — 1—[ chll

cells
= (15)'3)* (1)
=4.98 x 10
=1.39 x 10¥

for 216 atoms

for one mole. 4

The combinatorial topological entropy arises from lifting the
degeneracy of the Rivier network. Q044Lines j5 the number of
ways in which one can lift the degeneracy. Fig. 2 shows one of
these configurations.

The combinatorial topological entropy of the model (on a
molar basis) is

Scomb — kB In QOddLines
=2.28JK 'mole™". 5)
Thus we find that
Seomp = 0.45,. (6)

Configurational entropy, S,,g,, arises from rings that have
been twisted and distorted from their configuration in the
diamond cubic structure, from edges of the Rivier network
which are ‘wiggly’ and of variable length and because the
loops of the Rivier network also have a fluctuating number of
topological edges. One can, in principle, measure the entropy
frozen in the glass at a temperature 7, well below the glass
transition: Just cool the liquid slowly, from 7, through the
glass transition down to 7 (at T, liquid silicon is metallic with
six nearest neighbors but the entropy can be calculated or
measured by some independent means), measure the specific
heat, Cp, at each temperature and calculate the integral

T,
[(Cp/T)dT = S(T,) — S(T)). (7
Ty

At very low temperatures, Cp is very small and the lower limit
T, in the integral can be set to zero. Nevertheless, S(T}) =~ S(0)
remains finite, although the experimental value depends on
the rate of cooling. S(0) measures the entropy frozen in the
glass, which is the full topological entropy, Scomp + Scontig- ONE
can argue (Rivier, 1987, and private communication) that the
two contributions are roughly equal for a ‘semi-dilute’
network of loops. [A semi-dilute network of loops is such that
one does not know whether the nearest segment belongs to
the same loop or to any other. For the Rivier network, this
means that the average radius of a loop (the distance between
vertices of the Rivier network) is of the same order as the
wiggliness of individual loops, which appears to be the case in
Fig. 2.] Thus, for a semi-dilute network of loops, the topo-
logical entropy is maximal (since there is only one length
scale), with equal configurational and combinatorial contri-
butions.

S A comb* (8)

~
LR
config

Since the model has been found to have S, = 0.4S,, the
total topological entropy for the model is
Slopological = Scomb + Sconfig ~ 0'8St’ (9)

a value that is perhaps surprisingly large in view of the very
rough argument used to estimate S,,;, and of the smallness of
the model. The deficit, compared to the idealized Rivier—
Duffy calculation, arises from various causes, the most
important being that the model is insufficiently randomized
(Wooten & Weaire, 1986), the model is too small and/or the
parities of the faces (rings) are not statistically independent.

If one imagines building a cubic model having free surfaces
without periodic boundary conditions, there are no parity
constraints imposed by the surface. On the other hand, if the
model is to be a supercell such as that of Fig. 1, with periodic
boundary conditions imposed, it is necessary that opposite
sides be joined with little deviation from tetrahedral bonding
or from the average Si—Si bond length. This imposes
constraints on the topology and geometry of the rings in order
to satisfy the boundary conditions. There is some evidence
that this is indeed a constraint, for the angular deviations from
perfect tetrahedral bonding in models subject to periodic
boundary conditions have been found to be larger in smaller
models than in larger ones. If the cell is small, the boundary
constraints affect a larger fraction of the cell.

I thank D. Weaire for introducing me to the problem of odd
lines and for many stimulating discussions. N. Rivier has been
invaluable for his enthusiasm, encouragement, many helpful
suggestions and probing questions. W. Thurston inspired me to
pursue a topological approach when my attempts with purely
geometrical approaches ended in failure. B. Higgins tutored
me on Mathematica graphics. S. Holland has been a kind and
helpful reviewer. J. Koch and E. Suranyi provided the irre-
ducible ring program. I am indebted to them all.
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Wooten [Acta Cryst. (2002), A58, 346-351] defines cells in
amorphous Si as being bounded by irreducible rings of atoms,
which can be viewed as distorted polygons. These irreducible
rings are, roughly speaking, shortest rings. However, the
definition used is incomplete and leads to some large rings
being counted as irreducible when close examination reveals
they are not. In particular, the incomplete definition counts
four ninefold rings (out of a total of 1041 ninefold rings) as

addenda and errata

being irreducible. Yet a detailed examination reveals that
these four rings bound a set of smaller rings, and are clearly
not irreducible in any meaningful sense of the word. An
extended definition has been given [Rivier & Wooten (2003).
MATCH - Commun. Math. Comput. Chem. 48, 145-153], and
described at length, that removes the difficulties. It results in a
small increase in entropy, approaching slightly closer to the
ideal. The first paragraph of Wooten (2002) incorrectly states
that the nearest-neighbor distance in Si is 3.5 A, rather than
the correct value of 2.35 A. This misprint has no effect on
anything else.
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